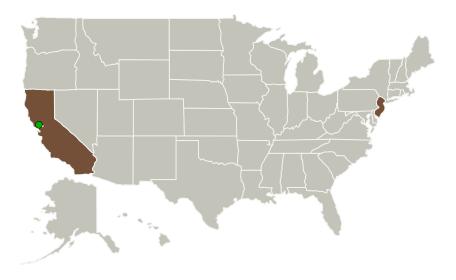
Flight Adaptive Blade for Optimum Rotor Response (FABFORR), Phase I



Completed Technology Project (2010 - 2010)

Project Introduction

While past research has demonstrated the utility and benefits to be gained with the application of advanced rotor system control concepts, none have been implemented to date on a production military or commercial rotorcraft. A key contributor to this fact is the inherent cost associated with installation and maintenance of these control systems, since many system designs require the replacement of a helicopter's rotor blades, rotor hub components, or both. The proposed work addresses this deficiency through the development of an onblade full-span camber control system that reaps many of the known benefits of advanced rotor control, in a retrofit design approach that has the potential to achieve production status due to its lower risks and costs compared to previous system concepts. The design leverages past work in the use of smart-material actuated bistable tabs for rotor blade tracking, with a newer integral actuation concept that will lead toward a more robust and flightworthy design.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Continuum	Lead	Industry	Ewing, New
Dynamics, Inc.	Organization		Jersey
Ames Research Center(ARC)	Supporting	NASA	Moffett Field,
	Organization	Center	California

Flight Adaptive Blade for Optimum Rotor Response (FABFORR), Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Flight Adaptive Blade for Optimum Rotor Response (FABFORR), Phase I

Completed Technology Project (2010 - 2010)

Primary U.S. Work Locations		
California	New Jersey	

Project Transitions

0

January 2010: Project Start

July 2010: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139945)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Continuum Dynamics, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

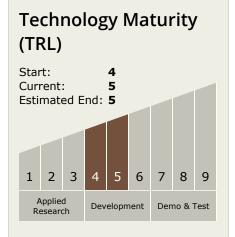
Carlos Torrez

Principal Investigator:

Robert Mckillip

Co-Investigator:

Robert Mckillip



Small Business Innovation Research/Small Business Tech Transfer

Flight Adaptive Blade for Optimum Rotor Response (FABFORR), Phase I

Completed Technology Project (2010 - 2010)

Technology Areas

Primary:

• TX15 Flight Vehicle Systems

☐ TX15.1 Aerosciences

☐ TX15.1.4 Aeroacoustics

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

